Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(a, h(x)) → f(g(x), h(x))
h(g(x)) → h(a)
g(h(x)) → g(x)
h(h(x)) → x
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
f(a, h(x)) → f(g(x), h(x))
h(g(x)) → h(a)
g(h(x)) → g(x)
h(h(x)) → x
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
F(a, h(x)) → F(g(x), h(x))
H(g(x)) → H(a)
G(h(x)) → G(x)
F(a, h(x)) → G(x)
The TRS R consists of the following rules:
f(a, h(x)) → f(g(x), h(x))
h(g(x)) → h(a)
g(h(x)) → g(x)
h(h(x)) → x
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
F(a, h(x)) → F(g(x), h(x))
H(g(x)) → H(a)
G(h(x)) → G(x)
F(a, h(x)) → G(x)
The TRS R consists of the following rules:
f(a, h(x)) → f(g(x), h(x))
h(g(x)) → h(a)
g(h(x)) → g(x)
h(h(x)) → x
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 2 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
G(h(x)) → G(x)
The TRS R consists of the following rules:
f(a, h(x)) → f(g(x), h(x))
h(g(x)) → h(a)
g(h(x)) → g(x)
h(h(x)) → x
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
G(h(x)) → G(x)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- G(h(x)) → G(x)
The graph contains the following edges 1 > 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
F(a, h(x)) → F(g(x), h(x))
The TRS R consists of the following rules:
f(a, h(x)) → f(g(x), h(x))
h(g(x)) → h(a)
g(h(x)) → g(x)
h(h(x)) → x
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
F(a, h(x)) → F(g(x), h(x))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
Tuple symbols:
M( F(x1, x2) ) = | 0 | + | | · | x1 | + | | · | x2 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
g(h(x)) → g(x)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
f(a, h(x)) → f(g(x), h(x))
h(g(x)) → h(a)
g(h(x)) → g(x)
h(h(x)) → x
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.